疲劳裂纹启裂源和晶界阻力的定量测量技术 Experimental Techniques for Measurement on Fatigue Crack Initiation Site Density-Strength Distribution and Grain Boundary Resistance to Crack Growth

翟同广 国家高层次海外特聘专家、长江学者讲席教授

Acknowledgement:

Former students: Wei Wen, Pei Cai, Yan Jin, Gongwang Zhang, Qiang Zeng and collaborator: Prof. Alfonzo Ngan

Contents

- Introduction
- An experimental method for measurement on resistance to crack growth across a grain boundary 定量测量晶界对疲劳裂纹扩展阻力 的实验方法;
 - 应用实例: 晶界阻力与裂纹面旋转角的关系、过时效AA7050 Al alloy 中垂 直晶界和沿晶界扩展阻力;
- An experimental method for quantification of crack initiation site density and strength distribution 定量测量疲劳裂纹启裂源密度及 其强度分步的实验方法
 - 应用实例: 环境效应、各向异性
- Summary

Fatigue Damage Major Cause for Failure

4-28-1988 After 89,090 flight cycles on a 737-200, metal fatigue lets the top go in flight. 1988, Boeing 737, fuselage blown off in flight, fatigue in fuselage behind front door.

2007, I35W bridge in Minneapolis collapsed, corrosion + fatigue in structure component.

2008, F-15C broken apart in flight, fatigue in a longeron component.

- Fatigue failures cause **capital loss (3.1%** of GDP in US in 1998; over **\$1 trillion** in 2012)
- Loss of human lives
- Many accidents can be <u>prevented</u> by accurate prediction of fatigue lives and design of new materials and components

Images from www.google.com

The Process of Fatigue Damage

Motivation: scientifically significant to quantitatively understand early stage of fatigue crack growth at microstructure scale. 预防断裂:装备关键材料的早期损伤预测非常重要

Short Fatigue Cracks

- Characteristics of Short Fatigue Crack (SFC) growth behaviors
 - Sensitive to microstructure; behave "abnormally"
 - > **Deflection**, **branching** or even **arrested** at **GBs**, or even inside grains
 - Irregular crack front
 - Scattering growth rate

T. Zhai, Metallurgical and Materials Transactions a-Physical Metallurgy and Materials Science, 37A (2006) 3139-3147. T. Zhai, A.J. Wilkinson, and J.W. Martin. Acta Materialia, 2000. **48**(20): p. 4917-4927 *K. Obrtlik, J. Polak, M. Hajek, A. Vasek, International Journal of Fatigue, 19 (1997) 471-475.*

GBs: <u>main barrier</u> to SFC growth → control growth behaviors <u>晶界是阻碍疲劳裂纹的主要微观结构,定量计算短疲劳裂纹扩展行为,需要知道其阻力的定义与数值?</u>

Zhai's 3-D Crystallographic Model

3-D crystallographic mechanism for crack growth along slip plane 1 in grain 1 onto slip plane 2 in grain 2

When passing GB, area <u>*abc*</u> has to be fractured, significant resistance to crack growth. $\rightarrow \alpha$ has to be minimised.

Minimum-*α* **criterion: crack twists onto the slip plane.** 裂纹穿过晶界的最小旋转角原则!

Zhai, T., A.J. Wilkinson, and J.W. Martin. Acta Materialia, 2000. 48(20): p. 4917-4927

Experimental Evidence

T. Zhai, A.J. Wilkinson, and J.W. Martin. Acta Materialia, 2000. 48(20): p. 4917-4927 T. Zhai, X.P. Jiang, J.X. Li, M.D. Garratt, G.H. Bray, International Journal of Fatigue, 27 (2005) 1202-1209

Growth across Grain Boundaries: A Crystallographic Model

• α and β angles: the main factors controlling short fatigue crack growth across a grain boundary

 $\alpha = |\psi_1 - \psi_2|$

twist angle of the crack plane on grain boundary plane

$$\beta = \left| \theta_1 - \theta_2 \right|, 0^{\circ} \leq \beta, \alpha, \psi_1, \psi_2, \theta_1, \theta_2 \leq 180^{\circ}$$

tilt angle of crack deflection at grain boundary

 α and β have to be minimised for a crack to pass through a grain boundary

T. Zhai, A.J. Wilkinson, J.W. Martin, Acta Materialia, Vol.48, pp. 4917, (2000).

Microstructural 3-D Effect on Fatigue Crack Nucleation: Grain Boundaries

The twist angle is affected by grain orientation and GB orientation

Resistance due to Crack Plane Twist

Larger twist \Rightarrow larger fracture steps \Rightarrow higher resistance This crystallographic model can explain the observed anomalous growth behaviors of short fatigue cracks

Crack Front Pinned by Large Twist

Crack front pinned by crack plane twist

Zhai, T., A.J. Wilkinson, and J.W. Martin. Acta Materialia, 2000. 48(20): p. 4917-4927

SFC Growth in Rolled Al-Li Alloy 8090

• Hot cross-rolled, pancake shaped grains \rightarrow major GBs vertical to L-S and T-S surfaces

• L-S sample, fatigued on four-point bend rig, max. stress= $0.5\sigma_v$, 20 Hz, R=0.1

Zhai, T., A.J. Wilkinson, and J.W. Martin. Acta Materialia, 2000. 48(20): p. 4917-4927

Crack Initiation & Growth

- Crack initiated // (001) plane, vertical to loading axis, due to the trace element of Na and K
- Crack propagated crystallographically through over 13 grains
- Assume GBs⊥surface: crack twisted onto a minimum-α crack plane at all GBs, except at GB3/2. why?

<u>W. Wen</u>, T. Zhai, Philosophical Magazine, 91 (2011) 3557-3577. Zhai, T., A.J. Wilkinson, and J.W. Martin. Acta Materialia, 2000. **48**(20): p. 4917-4927

Mating Fracture Surfaces

Fracture Surface & GB Tilting

→ Hot rolled→20% recrystallized small grains→ cube or Goss orientation, $\{100\} \perp$ load axis, preferred sites for crack nucleation

➤ Minimal crack deflection at GB3/3'→grain 3' had either a {111} or {001} almost parallel to the crack plane

Grain 3 & 3' together are crack initiation site, the crack plane vertical to load axis

W. Wen, T. Zhai, Philosophical Magazine, 91 (2011) 3557-3577.

Effect of GBs Plane Tilting

W. Wen, T. Zhai, Philosophical Magazine, 91 (2011) 3557-3577.

Overview of Quantitative Crack-growth Model

Experimental Design of Quantification: $R vs. \alpha$

W. Wen, A. Ngan, T. Zhai, Acta Mater., to be submitted.

Orientation of Crack-initiation Grains

➢ 68 micro-notches were made. Only 7 became crack initiation sites.

- > Crack-initiation grains were either Goss or R-cube orientated.
- Soft—high Schmid factor

W. Wen, A. Ngan, T. Zhai, Acta Mater., to be submitted.

Monitoring Short Fatigue Crack Growth

> Cracks propagated crystallographically through up to 5-8 GBs (150~250 μ m long).

W. Wen, Pei Ca, A. Ngan, T. Zhai, *Materials Science and Engineering A*, 666, pp. 288-296.

Identify GBs and Growth Rate on Surface

W. Wen, A. Ngan, T. Zhai, Acta Mater., to be submitted.

R vs. a裂纹面旋转角

Resistance (MPa√m)

材料的疲劳裂纹源密度和强度分布

•疲劳裂纹源密度和强度分布-有效的疲劳性能

• 高周疲劳性能(应用): 高铁、大飞机等

> 裂纹萌生寿命90%-99%全寿命
> 裂纹源密度越低,抗疲劳性能越好

• 材料质量控制重要参数(材料制造)

•需要研究工作

- 实验测量?
- 定量模拟?
- 各向异性、与微观组织结构关系?

Multi-site Fatigue Crack Nucleation in Al alloys

- Microstructural heterogeneities: inclusions, pores, particles, grain/phase boundaries, etc.
- Multi-site nucleation —> Crack initiation site density & strength distribution?
- Most become non-propagating reason?
- Coarser particles/pores unnecessarily initiation

100 um

An Experimental Method to Characterize Fatigue Weaklinks

Important fatigue properties

- Fatigue crack initiation: 60%-99% total life
- Useful in design for optimum microstructure, quality control and evaluation of materials properties
- Desirable to quantify FWLs
 - Experimental characterization
 - Theoretical modeling
 - Four point bend fatigue testing, Load controlled, R=0.1, f=20 Hz, room temperature
 - Maximum stress varies to measure the life
 - Sample surface well polished
 - Crack population measured at each stress

T. **Zhai** (2006), <u>MMTA</u>, vol. 37A, pp. 3139-3148. Y.B. Zhang, J.H. Xu, T. **Zhai** (2010), <u>Mater. Sci. Eng. A</u>, vol. 527, pp. 3639. Yan Jin, Pei Cai, Qingbo Tian, C.Y. Liang, D.J. Ke, G. Wang, T. **Zhai** (2016), <u>Fatigue &</u> <u>Fracture of Engineering Materials & Structures</u>, vol. 39, pp. 696.

Weibull Function of Fatigue Weakest-links

 Crack number vs. stress curve can be described by 3parameter Weibull function,

$$N = N_0 \left(1 - \exp\left[-k \left(\frac{\sigma - \sigma_0}{\sigma_0} \right)^m \right] \right)$$

- N_0 : the number of cracks in the surface area of $10 \times 6 \ \mu m^2$ at the stress level close to the ultimate tensile strength (σ_s), i.e., FWL number density $(N_0/(10 \times 6 \,\mu\text{m}^2))$.
- k: constant, m: Weibull modulus,
- σ_0 : fatigue limit

Strength Distribution of Fatigue Weakest-links

$$n = CN_0 \left(\frac{km}{\sigma_0}\right) \left(\frac{\sigma - \sigma_0}{\sigma_0}\right)^{m-1} \exp\left[-k \left(\frac{\sigma - \sigma_0}{\sigma_0}\right)^m\right]$$

Fatigue weakest link density and strength distribution are materials properties

Summary

- The resistance against crack growth at GBs can be quantified experimentally, which has paved a way for computing short crack growth behaviors.
- In an over-aged AA7050 Al alloy, the resistance against crack growth across grain boundaries is as high as 4-5 times as along GBs.
- The density and strength distribution of crack initiation sites can be quantified experimentally, which are important fatigue properties of a material. 裂纹源密度和其强度分布-材料的重要疲劳性能,实验方法应该制定国家标准,确定中国在关键过程材料应用的话语权!
- The effects of moisture and the anisotropy of crack site density can be quantitatively studied.